Special Points in a Triangle

IMPORTANT

Special Points in a Triangle: Overview

This topic covers concepts such as Special Points in Triangle, Centroid of a Triangle, Coordinates of Centroid in Triangle, Property of Centroid, Incentre of a Triangle, Coordinates of Incentre, Property of Incentre, Excentre of a Triangle, etc.

Important Questions on Special Points in a Triangle

MEDIUM
IMPORTANT

Let PS be the median of the triangle with vertices P2,2,Q6,-1 and R7,3. The equation of the line passing through 1,-1 and parallel to PS is

HARD
IMPORTANT

Two vertices of a triangle are  (5, 1) and (2, 3). If orthocentre of the triangle is the origin, find the coordinates of the third vertex.

EASY
IMPORTANT

A triangle has angles 90°,60° and 30°. The orthocentre of the triangle will lie on the _____  of the triangle.

EASY
IMPORTANT

A triangle has angles 110°,30° and 40°. The orthocentre of the triangle will lie _____ the triangle.

EASY
IMPORTANT

A triangle has angles 50°,60° and 80°. The orthocentre of the triangle will lie _____ the triangle.

MEDIUM
IMPORTANT

In ABC, medians AD¯ and CE¯ intersect at P, PE=1.5, PD=2 and DE=2.5. What is the area of 2AEDC?

Question Image

MEDIUM
IMPORTANT

If A(5,2), B(10,12) and P(x,y) are such that APPB=32, then the internal bisector of APB always passes through

EASY
IMPORTANT

Orthocentre of the triangle formed by the lines x+y=1 and xy=0 is

MEDIUM
IMPORTANT

If G( g ),H( h ) and P( p ) are centroid, orthocenter and circumcenter of a triangle and xp+yh+zg=0 then x, y, z

MEDIUM
IMPORTANT

The incentre of the triangle with vertices 1 , 3 , (0,0) and (2,0) is

MEDIUM
IMPORTANT

The orthocentre of the triangle with vertices 6,-1, -2,-1 and 2,5 is

EASY
IMPORTANT

The orthocentre of the triangle with vertices -2,-6, -2,4 and 1,3 is

HARD
IMPORTANT

If AD,BE and CF are three medians of the ABC then AD+BE<CF.

HARD
IMPORTANT

Let BE and CF be the two medians of a ABC and G be their intersection. Also let EF cut AG at O. Then AO:OG is 3:1.

MEDIUM
IMPORTANT

AD is the median of the triangle ABC and G is the centroid of ABC. Then AD:AG is 3:2.

MEDIUM
IMPORTANT

The locus of the centroid of the triangle whose vertices are 3cosα,3sinα9sinα,-9cosα and 1,0 is a circle of radius R, then the value of 9R22 is equal to

HARD
IMPORTANT

If G is the centroid of a ABC and P is any other point in the plane, then PA2+PB2+PC2 is equal to

EASY
IMPORTANT

The bisectors of angles A and B of a scalene triangle ABC meet at O. What is the point O called? Incentre/ Incircle/ Circumcircle.

EASY
IMPORTANT

Perpendicular bisectors of the sides AB and AC of a triangle ABC meet at O. What do you call the point O? Circumcenter / Circumradius / Circumcircle.

EASY
IMPORTANT

Question Image

Point G is the centroid of  ABC.

 If l(AP) =6 then l(GP) =?